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We present the theory of the Josephson effect in nanotube dots where an SU�4� symmetry can be realized.
We find a remarkably rich phase diagram that significantly differs from the SU�2� case. In particular,
�-junction behavior is largely suppressed. We analytically obtain the Josephson current in various parameter
regions: �i� in the Kondo regime covering the full crossover from SU�4� to SU�2�, �ii� for weak tunnel
couplings, and �iii� for a large BCS gap. The transition between these regions is studied numerically.
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I. INTRODUCTION

Several experimental groups have recently started to
study the Josephson effect in ultrasmall nanostructures,1

where the supercurrent can be tuned via the gate voltage
dependence of the electronic levels of the nanostructure. An
important system class where supercurrents have been suc-
cessfully observed2 is provided by carbon-nanotube �CNT�
quantum dots. In many cases, the experimental results com-
pare quite well to predictions based on modeling the CNT
dot as a spin-degenerate electronic level with SU�2� spin
symmetry, where the presence of a repulsive on-dot charging
energy U may allow for a �normal-state� Kondo effect. De-
pending on the ratio TK /�, where � is the energy gap in the
superconducting electrodes and TK the Kondo temperature,
theory3–8 predicts a transition between a unitary �maximum�
Josephson current for ��TK, possible thanks to the survival
of the Kondo resonance in that limit, and a �-junction re-
gime for ��TK, where the critical current is small and nega-
tive, i.e., the junction free-energy F��� has a minimum at
phase difference �=� as opposed to the more common
0-junction behavior.

Recent progress has paved the way for the fabrication of
very clean CNTs, resulting in a generation of quantum trans-
port experiments and thereby revealing interesting physics,
e.g., spin-orbit coupling effects9 or incipient Wigner crystal
behavior.10 In ultraclean CNTs, the orbital degree of freedom
��=	� reflecting clockwise and anticlockwise motion
around the CNT circumference �i.e., the two K points� is
approximately conserved when electrons enter or leave the
dot.11 Due to the combined presence of this orbital “pseu-
dospin” �denoted in the following by T� and the true elec-
tronic spin �S�, an enlarged SU�4� symmetry group can be
realized. In addition, a purely orbital SU�2� symmetry arises
when a Zeeman field is applied. Experimental support for
this scenario has already been published12 �for the case of
semiconductor dots, see Ref. 13� and several aspects have
been addressed theoretically.11,14 In particular, the SU�4�
Kondo regime is characterized by an enhanced Kondo tem-
perature and exotic local Fermi liquid behavior, where the
Kondo resonance is asymmetric with respect to the Fermi
level. However, so far both experiment and theory have only
studied the case of normal conducting leads, where conven-
tional linear response transport measurements cannot reliably

distinguish the SU�4� from the SU�2� scenario.14 Here we
provide the first theoretical study of the Josephson effect for
interacting quantum dots with �approximate� SU�4� symme-
try, and find drastic differences compared to the standard
SU�2� picture. In the Kondo limit, a qualitatively different
current-phase relation �CPR� is found, with the critical cur-
rent smaller by a factor �0.59. The usual �-junction behav-
ior is largely suppressed, but unconventional phases do ap-
pear and time-reversal symmetry can be spontaneously
broken. Our predictions can be tested using state-of-the-art
experimental setups, and offer clear signatures of the SU�4�
symmetry in very clean CNT quantum dots.

II. MODEL AND FORMAL SOLUTION

We study a quantum dot �Hd� contacted via a standard
tunneling Hamiltonian �Ht� to two identical superconducting
electrodes �HL/R�, H=Hd+Ht+HL+HR. We assume that the
dot has a spin- and orbital-degenerate electronic level 
��

=
 with identical intra- and inter-orbital charging energy U,15

Hd=
n̂+Un̂�n̂−1� /2 with n̂=���d��
† d��, where d��

† creates
a dot electron with spin �= ↑ , ↓ =	 and orbital pseudospin
projection �. Since the �=	 states are related by time-
reversal symmetry �clockwise and anticlockwise states are
exchanged�, we take the lead Hamiltonian as

Hj = �
k��

�kcjk��
† cjk�� + �

k�

��ei��/2�cjk�↑
† cj,−k,−�,↓

† + H.c.� ,

where cjk��
† creates an electron with wave vector k in lead

j=L /R, and �k is the single-particle energy. The tunneling
Hamiltonian is Ht=� jk�,����t����+ t̃��,−���cjk��

† d���+H.c.,
where t �t̃� describes orbital �non�conserving tunneling pro-
cesses. Following standard steps,4 the noninteracting lead
fermions can now be integrated out. The partition function
Z���=e−�F��� at inverse temperature � then reads �we often
set e=�=1�

Z��� = Trd�e−�HdTe−�0
�d�d��D†������−���D����� , �1�

where the trace extends over the dot Hilbert space, T denotes
time ordering, and we use the Nambu bispinor D
= �de↑ ,de↓

† ,do↑ ,do↓
† � with even/odd linear combinations of the

orbital states, de�= �d+,�+d−,�� /�2 and do�=��d+,�
−d−,�� /�2. In this basis, the self-energy ���� representing
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the BCS leads is diagonal in orbital space. With the orbital
mixing angle �=2 tan−1�t̃ / t� and the normal-state density of
states �0=2�k���k�, the even/odd channels are characterized
by the hybridization widths ��=e,o= �1	sin ��� with �

=��0�t2+ t̃2�. In what follows, we study the zero-temperature
limit and assume the wide-band limit1 for the leads. The
Fourier transformed self-energy is then expressed in terms of
the 2�2 Nambu matrices

��=e,o��� =
��

��2 + �2� − i� � cos
�

2

� cos
�

2
− i� � .

The result �1� will now be examined in several limits. We
start with the strong-correlation limit U→�, and later ad-
dress the case of finite U. Note that Eq. �1� for �=0 corre-
sponds to the SU�4� symmetric case while for �=� /2 there
is only one conducting channel with nonzero transmission
which, under certain conditions, corresponds to the usual
SU�2� model.

III. DEEP KONDO LIMIT

Let us first discuss the Kondo limit TK�� in the quarter-
filled case, 
�0 and 	n̂
�1. The Kondo temperature is
given by TK=D exp��
 /4�� 11 with bandwidth D. As in the
SU�2� case,3 the Josephson current at T=0 can be computed
from local Fermi-liquid theory, either using phase shift argu-
ments or an equivalent mean-field slave-boson treatment.5

The latter approach yields the self-consistent dot level 
̃ and
thereby the transmission probability for channel �=e ,o,11

T� =
�1 	 sin ��2TK

2


̃2 + �1 	 sin ��2TK
2 ,


̃

TK
=

�1 − sin ���sin �+1�/4

�1 + sin ���sin �−1�/4 .

�2�

In the SU�4� case ��=0�, we have Te=To=1 /2, while the
SU�2� limit ��=� /2� has a decoupled odd channel, Te=1
and To=0. The CPR covering the crossover from the SU�4�
to the SU�2� Kondo regime then follows as

I��� =
e�

2�
�

�=e,o

T� sin �

�1 − T� sin2�

2

. �3�

The known SU�2� result3 is recovered for �=� /2. The SU�4�
CPR has a completely different shape, as shown in Fig. 1.
We note that the critical current Ic=max�I���� is suppressed
by the factor 2−�2�0.59 relative to the unitary limit e� /�
reached for the SU�2� dot. The Josephson current in the deep
Kondo regime is thus very sensitive to the SU�4� vs SU�2�
symmetry.

IV. PERTURBATION THEORY IN �

Next we address the opposite limit of very small ���,
where lowest-order perturbation theory in � applies. After
some algebra, Eq. �1� for �=0 yields the CPR of a tunnel

junction, I���= Ic sin���, where the critical current is

Ic = �4��
� − ��− 
��F�
/��I0, �4�

with the Heaviside function �, the current scale I0
=��� /���2, and �see also Ref. 16�

F�x� =
��/2�2�1 − x� − arccos2 x

2x�1 − x2�
.

In this U→� limit, the dot contains one electron for �finite�

�0, and thus we have spin S=1 /2. Equation �4� shows that
such a magnetic junction displays a � phase. For the SU�4�
case, the ratio Ic�−
� / Ic�
�=−1 /4 is twice smaller than in
the SU�2� case, i.e., �-junction behavior tends to be sup-
pressed. This tendency is also confirmed for U�� �see be-
low�, where the � phase is in fact essentially absent. The
factor 1/4 can be understood in simple terms by counting the
number of possible processes leading to a Cooper pair trans-
fer through the dot.17,18 When 
�0, there are four possibili-
ties corresponding to the quantum numbers �� ,�� of the first
electron entering the dot. However, for 
�0 there is only
one possibility since an electron already occupies the dot and
then only one specific choice of �� ,�� allows for Cooper
pair tunneling. This argument is readily generalized to the
SU�2N� case, where the above ratio of critical currents is
obtained as −1 /2N.

V. EFFECTIVE HAMILTONIAN FOR �\�

The partition function �1� simplifies considerably when �
exceeds all other energy scales of interest. Then the dynam-
ics is always confined to the subgap region �Andreev states�
and quasiparticle tunneling processes from the leads �con-
tinuum states� are negligible. In particular, this allows to
study the case U��. In fact, for �→�, with the Cooper
pair operators b1

†=de↑
† do↓

† and b2
†=do↑

† de↓
† , Eq. �1� is equiva-

lently described by the effective dot Hamiltonian

H� = Hd + cos��/2���eb1 + �ob2 + H.c.� . �5�

The resulting Hilbert space can be decomposed into three
decoupled sectors19 according to spin S and orbital pseu-
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FIG. 1. �Color online� Josephson CPR in the Kondo limit for
various �. The SU�4� case corresponds to �=0, the SU�2� case to
�=� /2. The supercurrent is given in units of the unitary limit Ic

=e� /�.
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dospin T �notice that these quantities are localized on the dot
for �→��. The ground-state energy Eg���=min�E�S,T�� then
determines the Josephson current I���=2��Eg���. �i� The
�S ,T�=0 sector is spanned by the four states
�0
 ,b1

†0
 ,b2
†0
 ,b1

†b2
†0
�, where 0
 is the empty dot state.

The matrix representation reads

H�S,T�=0 =�
0 �e cos

�

2
�o cos

�

2
0

�e cos
�

2
E2 0 �o cos

�

2

�o cos
�

2
0 E2 �e cos

�

2

0 �o cos
�

2
�e cos

�

2
E4

� ,

with the eigenenergies En=
n+Un�n−1� /2 of the decoupled
dot. The lowest energy E�S,T�=0=E2+z then follows from the
smallest root of the quartic equation �	�z2−2zU
− ��e	�o�2 cos2 �

2 �= �E4z /2�2. �ii� The �S ,T�=1 /2 sector can
be decomposed into four subspaces with one or three elec-
trons according to Sz= 	1 /2 and Cooper pair channel �
=e ,o. The Hamiltonian is

H�S,T�=1/2
��� = � E1 �� cos�

2

�� cos�
2 E3

� ,

where H�S,T�=1/2
�e� operates in the subspace spanned by

�do↑
† 0
 ,b1

†do↑
† 0
� for Sz=+1 /2, and �de↓

† 0
 ,b1
†de↓

† 0
� for Sz

=−1 /2. �Similarly, the subspaces corresponding to H�S,T�=1/2
�o�

are obtained by letting d��
† →d�,−�

† and b1
†→b2

†.� With �e
��o, the lowest energy is E�S,T�=1/2= �E1+E3− ��E3−E1�2

+4�e
2 cos2�� /2��1/2� /2. �iii� Finally, the �S ,T�= �1,0� sector

is spanned by the two uncoupled two-particle states
de,�

† do,�
† 0
, with �-independent energy ES=1,T=0=E2. In addi-

tion, there are two decoupled �S ,T�= �0,1� states d�↑
† d�↓

† 0

with the same energy E2. In the limit �→�, this �S ,T�=1
sector is energetically unfavorable except possibly at �=�.

VI. PHASE DIAGRAM FOR �š�

Next we discuss the resulting phase diagram in the SU�4�
limit ��=0�. The result for �→� is shown in Fig. 2 in the
U−
 plane. The phases are classified according to the three
sectors defined above.20 The reported phases are specific for
the SU�4� symmetry and are qualitatively different from the
standard SU�2� case. We observe that the �-dependence of
the �→� ground-state energy implies 0-junction behavior
for both S=0 and S=1 /2. While the magnetic S=1 /2 sector
often represents a �-junction,3,4,6 in multilevel dots there is
no direct connection between the spin and the sign of the
Josephson coupling.18 The �-phase found under perturbation
theory �Eq. �4� for 
�0� is in fact restricted to the regime
U��, while for U��, the S=1 /2 state displays a 0-phase.
In the intermediate regime one should therefore observe a
crossover between those two behaviors. Interestingly, there
are parameter regions with a spin/pseudospin transition as �
varies. For instance, the “black” regions in Fig. 2 correspond
to a mixed state with �S ,T�=0 at �=0 and �S ,T�=1 /2 at �
=�, while for the “blue” region, the ground state is in the
�S ,T�=0 sector except at �=� where it crosses to the
�S ,T�=1 sector.

We find that these phases are also observable at finite �
��, where we have employed two complementary ap-
proaches. First, a full numerical solution is possible when
approximating each electrode by a single site �zero-
bandwidth limit�, which can provide a satisfactory, albeit not
quantitative, understanding of the phase diagram.8 Second,
one can go beyond the above �→� limit by including co-
tunneling processes in a systematic way. Both approaches
give essentially the same results, and here we only show
results from the single-site model. As can be observed in Fig.
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FIG. 2. �Color online� Phase diagram for �→�. White regions
correspond to �S ,T�=0, and green regions to �S ,T�=1 /2. In the
black regions, the ground state has �S ,T�=0 for �=0 and �S ,T�
=1 /2 for �=�. For the blue region, we have �S ,T�=0 at �=0 and
�S ,T�=1 at �=�. �Ref. 20�
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FIG. 3. �Color online� �a� Same as Fig. 2 but for �=10� within
the zero-bandwidth limit for the leads �see text�. Although the �
→� phase diagram is basically reproduced, for finite �, the
�S ,T�=1 /2 phase �green� exhibits a crossover from 0- to �-junction
behavior for U��, as illustrated in panel �b�, where the CPR is
shown for 
 /�=−5 and several U; the current is normalized to I0,
see Eq. �4�. Moreover, a phase with �S ,T�=0 at �=0 and �S ,T�
=1 /2 at �=� appears, where �contrary to the “black” phase� �
=� corresponds to the lowest energy ��� behavior�, indicated in red
�within the dashed ellipses in panel �a��.
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3�a�, the overall features of the �→� phase diagram are
reproduced for finite �, with somewhat shifted boundaries
between the different regions. In particular, in the “green”
�S=1 /2� regime, this calculation captures the mentioned
transition from a 0-junction at ��U to a � junction at �
�U, as illustrated in Fig. 3�b�. Consequently, for finite �,
the “black” phase may now have lowest energy at �=�,
implying the �� phase4,6,8 indicated in “red” in Fig. 3�a�.
Finally, for the junctions with U /�=10.5 and 11 in Fig. 3�b�,
the ground state is realized at phase difference 0����,
which implies that time-reversal symmetry is spontaneously
broken here.

To conclude, we have studied the Josephson current in
SU�4� symmetric quantum dots, including the crossover to
the standard SU�2� symmetric case. Contrary to normal-state
transport, the supercurrent is very sensitive to the symmetry
group and should allow to observe clear signatures of the

SU�4� state in ultraclean CNT dots. In particular, the � phase
is largely suppressed, the CPR in the Kondo limit has a dis-
tinctly different shape and a smaller critical current, and the
phase diagram turns out to be quite rich. In addition, follow-
ing Ref. 21, we expect a strongly reduced thermal noise in
the deep SU�4� Kondo regime since �in contrast to the SU�2�
case� there are two channels with imperfect transmission.
Future theoretical work is needed to give a quantitative un-
derstanding of the crossover between the various regimes
discussed above.
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